Колебательный контур включен в сеть переменного напряжения

Если можно, с полным и подробным решением. Заранее спасибо.

В статье расскажем что такое колебательный контур. Последовательный и параллельный колебательный контур.

Колебательный контур — устройство или электрическая цепь, содержащее необходимые радиоэлектронные элементы для создания электромагнитных колебаний. Разделяется на два типа в зависимости от соединения элементов: последовательный и параллельный.

Основная радиоэлементная база колебательного контура: Конденсатор, источник питания и катушка индуктивности.

Последовательный колебательный контур

Последовательный колебательный контур является простейшей резонансной (колебательной) цепью. Состоит последовательный колебательный контур, из последовательно включенных катушки индуктивности и конденсатора. При воздействии на такую цепь переменного (гармонического) напряжения, через катушку и конденсатор будет протекать переменный ток, величина которого вычисляется по закону Ома: I = U / ХΣ , где ХΣ — сумма реактивных сопротивлений последовательно включенных катушки и конденсатора (используется модуль суммы).

Для освежения памяти, вспомним как зависят реактивные сопротивления конденсатора и катушки индуктивности от частоты приложенного переменного напряжения. Для катушки индуктивности, эта зависимость будет иметь вид:

Из формулы видно, что при увеличении частоты, реактивное сопротивление катушки индуктивности увеличивается. Для конденсатора зависимость его реактивного сопротивления от частоты будет выглядеть следующим образом:

В отличии от индуктивности, у конденсатора всё происходит наоборот — при увеличении частоты, реактивное сопротивление уменьшается. На следующем рисунке графически представлены зависимости реактивных сопротивлений катушки XL и конденсатора ХC от циклической (круговой) частоты ω, а также график зависимости от частоты ω их алгебраической суммы ХΣ. График, по сути, показывает зависимость от частоты общего реактивного сопротивления последовательного колебательного контура.

Из графика видно, что на некоторой частоте ω=ωр , на которой реактивные сопротивления катушки и конденсатора равны по модулю (равны по значению, но противоположны по знаку), общее сопротивление цепи обращается в ноль. На этой частоте в цепи наблюдается максимум тока, который ограничен только омическими потерями в катушке индуктивности (т.е. активным сопротивлением провода обмотки катушки) и внутренним сопротивлением источника тока (генератора). Такую частоту, при которой наблюдается рассмотренное явление, называемое в физике резонансом, называют резонансной частотой или собственной частотой колебаний цепи. Также из графика видно, что на частотах, ниже частоты резонанса реактивное сопротивление последовательного колебательного контура носит емкостной характер, а на более высоких частотах — индуктивный. Что касается самой резонансной частоты, то она может быть вычислена при помощи формулы Томсона, которую мы можем вывести из формул реактивных сопротивлений катушки индуктивности и конденсатора, приравняв их реактивные сопротивления друг к другу:

На рисунке справа, изображена эквивалентная схема последовательного резонансного контура с учетом омических потерь R, подключенного к идеальному генератору гармонического напряжения с амплитудой U. Полное сопротивление (импеданс) такой цепи определяется: Z = √(R 2 +XΣ 2 ), где XΣ = ω L-1/ωC. На резонансной частоте, когда величины реактивных сопротивлений катушки XL = ωL и конденсатора ХС= 1/ωС равны по модулю, величина XΣ обращается в нуль (следовательно, сопротивление цепи чисто активное), а ток в цепи определятся отношением амплитуды напряжения генератора к сопротивлению омических потерь: I= U/R. При этом на катушке и на конденсаторе, в которых запасена реактивная электрическая энергия, падает одинаковое напряжение UL = UС = IXL = IXС.

На любой другой частоте, отличной от резонансной, напряжения на катушке и конденсаторе неодинаковы — они определяются амплитудой тока в цепи и величинами модулей реактивных сопротивлений XL и XС.Поэтому резонанс в последовательном колебательном контуре принято называть резонансом напряжений. Резонансной частотой контура называют такую частоту, на которой сопротивление контура имеет чисто активный (резистивный) характер. Условие резонанса — это равенство величин реактивных сопротивлений катушки индуктивности и ёмкости.

Одними из наиболее важных параметров колебательного контура (кроме, разумеется, резонансной частоты) являются его характеристическое (или волновое) сопротивление ρ и добротность контура Q. Характеристическим (волновым) сопротивлением контура ρ называется величина реактивного сопротивления емкости и индуктивности контура на резонансной частоте: ρ = ХL = ХC при ω =ωр . Характеристическое сопротивление может быть вычислено следующим образом: ρ = √(L/C). Характеристическое сопротивление ρ является количественной мерой оценки энергии, запасенной реактивными элементами контура — катушкой (энергия магнитного поля) WL = (LI 2 )/2 и конденсатором (энергия электрического поля) WC=(CU 2 )/2. Отношение энергии, запасенной реактивными элементами контура, к энергии омических (резистивных) потерь за период принято называть добротностью Q контура, что в буквальном переводе с английского языка обозначает «качество».

Добротность колебательного контура — характеристика, определяющая амплитуду и ширину АЧХ резонанса и показывающая, во сколько раз запасы энергии в контуре больше, чем потери энергии за один период колебаний. Добротность учитывает наличие активного сопротивления нагрузки R.

Для последовательного колебательного контура в RLC цепях, в котором все три элемента включены последовательно, добротность вычисляется:

Читайте также:  Комната для девочки гимнастки

где R, L и C — сопротивление, индуктивность и ёмкость резонансной цепи, соответственно.

Величину, обратную добротности d = 1 / Q называют затуханием контура. Для определения добротности обычно пользуются формулой Q = ρ / R, где R-сопротивление омических потерь контура, характеризующее мощность резистивных (активных потерь) контура Р = I 2 R. Добротность реальных колебательных контуров, выполненных на дискретных катушках индуктивности и конденсаторах, составляет от нескольких единиц до сотни и более. Добротность различных колебательных систем, построенных на принципе пьезоэлектрических и других эффектов (например, кварцевые резонаторы) может достигать нескольких тысяч и более.

Частотные свойства различных цепей в технике принято оценивать с помощью амплитудно-частотных характеристик (АЧХ), при этом сами цепи рассматривают как четырёхполюсники. На рисунках ниже представлены два простейших четырехполюсника, содержащих последовательный колебательный контур и АЧХ этих цепей, которые приведены (показаны сплошными линями). По вертикальной оси графиков АЧХ отложена величина коэффициента передачи цепи по напряжению К, показывающая отношение выходного напряжения цепи к входному.

Для пассивных цепей (т.е. не содержащих усилительных элементов и источников энергии), величина К никогда не превышает единицу. Сопротивление переменному току изображённой на рисунке цепи, будет минимально при частоте воздействия, равной резонансной частоте контура. В этом случае коэффициент передачи цепи близок к единице (определяется омическими потерями в контуре). На частотах, сильно отличающихся от резонансной, сопротивление контура переменному току достаточно велико, а следовательно, и коэффициент передачи цепи будет падать практически до нуля.

При резонансе в этой цепи, источник входного сигнала оказывается фактически замкнутым накоротко малым сопротивлением контура, благодаря чему коэффициент передачи такой цепи на резонансной частоте падает практически до нуля (опять-таки в силу наличия конечного сопротивления потерь). Наоборот, при частотах входного воздействия, значительно отстоящих от резонансной, коэффициент передачи цепи оказывается близким к единице. Свойство колебательного контура в значительной степени изменять коэффициент передачи на частотах, близких к резонансной, широко используется на практике, когда требуется выделить сигнал с конкретной частотой из множества ненужных сигналов, расположенных на других частотах. Так, в любом радиоприемнике при помощи колебательных цепей обеспечивается настройка на частоту нужной радиостанции. Свойство колебательного контура выделять из множества частот одну принято называть селективностью или избирательностью. При этом интенсивность изменения коэффициента передачи цепи при отстройке частоты воздействия от резонанса принято оценивать при помощи параметра, называемого полосой пропускания. За полосу пропускания принимается диапазон частот, в пределах которого уменьшение (или увеличение — в зависимости от вида цепи) коэффициента передачи относительно его значения на резонансной частоте, не превышает величины 0,7 (3дБ).

Пунктирными линиями на графиках показаны АЧХ точно таких же цепей, колебательные контуры которых имеют такие же резонансные частоты, как и для случая рассмотренного выше, но обладающие меньшей добротностью (например, катушка индуктивности намотана проводом, обладающим большим сопротивлением постоянному току). Как видно из рисунков, при этом расширяется полоса пропускания цепи и ухудшаются ее селективные (избирательные) свойства. Исходя из этого, при расчете и конструировании колебательных контуров нужно стремиться к повышению их добротности. Однако, в ряде случаев, добротность контура, наоборот, приходится занижать (например, включая последовательно с катушкой индуктивности резистор небольшой величины сопротивления), что позволяет избежать искажений широкополосных сигналов. Хотя, если на практике требуется выделить достаточно широкополосный сигнал, селективные цепи, как правило, строятся не на одиночных колебательных контурах, а на более сложных связанных (многоконтурных) колебательных системах, в т.ч. многозвенных фильтрах.

Параллельный колебательный контур

В различных радиотехнических устройствах наряду с последовательными колебательными контурами часто (даже чаще, чем последовательные) применяют параллельные колебательные контуры На рисунке приведена принципиальная схема параллельного колебательного контура. Здесь параллельно включены два реактивных элемента с разным характером реактивности Как известно, при параллельном включении элементов складывать их сопротивления нельзя — можно лишь складывать проводимости. На рисунке приведены графические зависимости реактивных проводимостей катушки индуктивности BL = 1/ωL, конденсатора ВC = -ωC, а также суммарной проводимости ВΣ, этих двух элементов, являющаяся реактивной проводимостью параллельного колебательного контура. Аналогично, как и для последовательного колебательного контура, имеется некоторая частота, называемая резонансной, на которой реактивные сопротивления (а значит и проводимости) катушки и конденсатора одинаковы. На этой частоте суммарная проводимость параллельного колебательного контура без потерь обращается в нуль. Это значит, что на этой частоте колебательный контур обладает бесконечно большим сопротивлением переменному току.

Если построить зависимость реактивного сопротивления контура от частоты XΣ = 1/BΣ, эта кривая, изображённая на следующем рисунке, в точке ω = ωр будет иметь разрыв второго рода. Сопротивление реального параллельного колебательного контура (т.е с потерями), разумеется, не равно бесконечности — оно тем меньше, чем больше омическое сопротивление потерь в контуре, т.е уменьшается прямо пропорционально уменьшению добротности контура. В целом, физический смысл понятий добротности, характеристического сопротивления и резонансной частоты колебательного контура, а также их расчетные формулы, справедливы как для последовательного, так и для параллельного колебательного контура.

Читайте также:  Как усилить сигнал usb модема

Для параллельного колебательного контура, в котором индуктивность, емкость и сопротивление включены параллельно, добротность вычисляется:

где R, L и C — сопротивление, индуктивность и ёмкость резонансной цепи, соответственно.

Рассмотрим цепь, состоящую из генератора гармонических колебаний и параллельного колебательного контура. В случае, когда частота колебаний генератора совпадает с резонансной частотой контура его индуктивная и емкостная ветви оказывают равное сопротивление переменному току, в следствие чего токи в ветвях контура будут одинаковыми. В этом случае говорят, что в цепи имеет место резонанс токов. Как и в случае последовательного колебательного контура, реактивности катушки и конденсатора компенсируют друг друга, и сопротивление контура протекающему через него току становится чисто активным (резистивным). Величина этого сопротивления, часто называемого в технике эквивалентным, определяется произведением добротности контура на его характеристическое сопротивление Rэкв = Q·ρ. На частотах, отличных от резонансной, сопротивление контура уменьшается и приобретает реактивный характер на более низких частотах — индуктивный (поскольку реактивное сопротивление индуктивности падает при уменьшении частоты), а на более высоких — наоборот, емкостной (т к реактивное сопротивление емкости падает с ростом частоты).

В процессе работы контура, дважды за период колебаний, происходит энергетический обмен между катушкой и конденсатором (смотри рисунок). Энергия поочередно накапливается, то в виде энергии электрического поля заряженного конденсатора, то в виде энергии магнитного поля катушки индуктивности. При этом в контуре протекает собственный контурный ток Iк, превосходящий по величине ток во внешней цепи I в Q раз. В случае идеального контура (без потерь), добротность которого теоретически бесконечна, величина контурного тока также будет бесконечно большой. Но на практике, такого не бывает. В любом случае, качество элементов контура, их паразитные характеристики, электрические цепи, служащие для подвода энергии и отбора энергии из контура, не позволят контурному току расти.

Рассмотрим, как зависят коэффициенты передачи четырехполюсников от частоты, при включении в них не последовательных колебательных контуров, а параллельных.

Четырехполюсник, изображенный на рисунке, на резонансной частоте контура представляет собой огромное сопротивление току, поэтому при ω=ωр его коэффициент передачи будет близок к нулю (с учетом омических потерь). На частотах, отличных от резонансной, сопротивление контура будет уменьшатся, а коэффициент передачи четырехполюсника — возрастать.

Для четырехполюсника, приведенного на рисунке выше, ситуация будет противоположной — на резонансной частоте контур будет представлять собой очень большое сопротивление и практически все входное напряжение поступит на выходные клеммы (т.е коэффициент передачи будет максимален и близок к единице). При значительном отличии частоты входного воздействия от резонансной частоты контура, источник сигнала, подключаемый к входным клеммам четырехполюсника, окажется практически закороченном накоротко, а коэффициент передачи будет близок к нулю.

Видео по теме: Колебательный контур

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Контрольная работа по физике Переменный ток 11 класс с ответами. Контрольная работа включает 4 варианта, в каждом варианте по 7 заданий.

1 вариант

1. Конденсатор емкостью 250 мкФ включается в сеть пе­ременного тока. Определите емкостное сопротивление конденсатора при частоте 50 Гц.

2. Чему равен период собственных колебаний в колеба­тельном контуре, если индуктивность катушки равна 2,5 мГн, а емкость конденсатора 1,5 мкФ?

3. Напряжение меняется с течением времени по закону u = 40sin(10πt + π/6) В. Определите амплитуду, действующее значение, круговую частоту колебаний и началь­ную фазу колебаний напряжения.

4. Сколько оборотов в минуту должна совершать рамка из 20 витков проволоки размером 0,2 х 0,4 м в магнитном поле с индукцией 1 Тл, чтобы амплитуда ЭДС равнялась 500 В?

5. Напряжение в цепи изменяется по закону u = Umsin 2π /Tt, причем амплитуда напряжения 200 В, а период 60 мс. Какое значение принимает напряжение через 10 мс?

6. Катушка индуктивностью 75 мГн последовательно с конденсатором включена в сеть переменного тока с на­пряжением 50 В и частотой 50 Гц. Чему равна емкость конденсатора при резонансе в полученной сети?

7. В колебательном контуре конденсатору сообщили за­ряд 1 мКл, после чего в контуре возникли затухающие электромагнитные колебания. Какое количество теплоты выделится к моменту, когда максимальное напряжение на конденсаторе станет меньше начального максималь­ного значения в 4 раза? Емкость конденсатора равна 10 мкФ.

2 вариант

1. Катушка с индуктивностью 35 мГн включается в сеть переменного тока. Определите индуктивное сопротивле­ние катушки при частоте 60 Гц.

2. Определите частоту собственных колебаний в колеба­тельном контуре, состоящем из конденсатора емкостью 2,2 мкФ и катушки с индуктивностью 0,65 мГн.

Читайте также:  Как сделать листочки из картона

3. ЭДС индукции, возникающая в рамке при вращении в однородном магнитном поле, изменяется по закону е = 12sin100πt В. Определите амплитуду ЭДС, действую­щее значение ЭДС, круговую частоту колебаний и на­чальную фазу колебаний.

4. Конденсатор емкостью 800 мкФ включен в сеть пере­менного тока с частотой 50 Гц с помощью проводов, со­противление которых 3 Ом. Какова сила тока в конденса­торе, если напряжение в сети 120 В?

5. В цепь переменного тока с частотой 50 Гц включено ак­тивное сопротивление 5 Ом. Амперметр показывает силу тока 10 А. Определите мгновенное значение напряжения через 1/300 с, если колебания силы тока происходят по закону косинуса.

6. В колебательном контуре индуктивность катушки рав­на 0,2 Гн, а амплитуда колебаний силы тока 40 мА. Найдите энергию электрического поля конденсатора и магнитного поля катушки в момент, когда мгновенное значение силы тока в 2 раза меньше амплитудного значения.

7. Переменный ток возбуждается в рамке, имеющей 200 витков. Площадь одного витка 300 см 2 Индукция маг­нитного поля 1,5 ⋅ 10 -2 Тл. Определите ЭДС индукции че­рез 0,01 с после начала движения рамки из нейтрального положения. Амплитуда ЭДС равна 7,2 В.

3 вариант

1. Определите емкость конденсатора, сопротивление ко­торого в цепи переменного тока частотой 50 Гц равно 800 Ом.

2. В рамке, равномерно вращающейся в однородном маг­нитном поле, индуцируется ток, мгновенное значение ко­торого выражается формулой i = 3sin157t А. Определите амплитуду, действующее значение, круговую частоту ко­лебаний и начальную фазу колебаний силы тока.

3. Рассчитайте период собственных колебаний в колебательном контуре при емкости конденсатора 2 мкФ и ин­дуктивности катушки 0,5 мГн.

4. Рамка площадью 150 см 2 , содержащая 50 витков про­волоки, равномерно вращается со скоростью 120 об/мин в однородном магнитном поле с магнитной индукцией 0,8 Тл. Найдите амплитуду ЭДС индукции в рамке.

5. Амплитуда напряжения в колебательном контуре 100 В, частота колебаний 5 МГц. Через какое время на­пряжение будет 71 В?

6. Конденсатор емкостью 10 мкФ зарядили до напряже­ния 400 В и подключили к катушке. После этого возник­ли затухающие электрические колебания. Какое количе­ство теплоты выделится в контуре за время, в течение ко­торого амплитуда колебаний уменьшится вдвое?

7. Электроплитка сопротивлением 50 Ом включена в сеть переменного тока с частотой 50 Гц и напряжением 220 В. Запишите уравнения, выражающие зависимость напряжения и силы тока от времени для электроплитки. Чему равно мгновенное значение силы тока и напряже­ния через 1/100 с, если колебания происходят по закону синуса?

4 вариант

1. Какой индуктивности катушку надо включить в коле­бательный контур, чтобы при емкости конденсатора 2 мкФ получить частоту 1 кГц?

2. Сила тока в электрической цепи изменяется по закону i = 3cos(100πt + π/3) А. Определите амплитуду силы то­ка, действующее значение силы тока, круговую частоту колебаний и начальную фазу колебаний.

3. Рассчитайте сопротивление конденсатора емкостью 250 мкФ, включенного в цепь переменного тока с часто­той 200 Гц.

4. Индуктивность колебательного контура равна 0,01 Гн, а емкость 1 мкФ. Конденсатор зарядили до разности по­тенциалов 200 В. Какой наибольший ток возникает в контуре в процессе электромагнитных колебаний?

5. Конденсатор и катушка соединены последовательно. Емкостное сопротивление конденсатора 5 кОм. Какой должна быть индуктивность катушки, чтобы резонанс наступил в цепи при частоте колебаний силы тока 20 кГц?

6. В колебательном контуре с индуктивностью 0,4 Гн и емкостью 20 мкФ амплитудное значение силы тока равно 0,1 А. Каким будет напряжение в момент, когда энергия электрического и энергия магнитного полей будут рав­ны? Колебания считать незатухающими.

7. В цепь переменного тока с частотой 400 Гц включена катушка индуктивностью 0,1 Гн. Определите, какой ем­кости конденсатор надо включить в эту цепь, чтобы осу­ществился резонанс.

Ответы на контрольную работа по физике Переменный ток 11 класс
1 вариант
1. 12,7 Ом
2. 0,38 мс
3. 40 В; 28,4 В; 10π рад/с; π/6 рад
4. ≈ 3000 об/мин
5. 100 В
6. 135 мкФ
7. 0,047 Дж
2 вариант
1. 13,2 Ом
2. 4233 Гц
3. 12 В; 8,5 В; 100π рад/с; 0
4. 24 А
5. 35,5 В
6. 120 мкДж; 40 мкДж
7. 5,04 В
3 вариант
1. 4 мкФ
2. 3 А; 2,14 А; 157 рад/с; 0
3. 0,2 мс
4. 7,5 В
5. 25 нс
6. 0,6 Дж
7. u = 310 х sin 100pt; 0; 0
4 вариант
1. 12,7 мГн
2. 3 А; 2,13 А; 100π рад/ с; π/3 рад
3. 3,2 Ом
4. 2 А
5. 0,04 Гн
6. 10 В
7. 1,6 мкФ

Комментарии запрещены.

Присоединяйся