Коммутационное оборудование электрических станций и подстанций

Современная цивилизация напрямую зависит от электричества. Если бы человек не научился использовать и генерировать электроэнергию, то так и остался бы в XIX веке. Сегодня для её выработки применяются электрические станции.

Электростанция – промышленное предприятие или комплект оборудования для производства электроэнергии из различных форм первичной энергии.

По последнему критерию электростанции делятся на:

Еще есть электростанции, которые используют:

  • как первичную энергию тепло из глубин Земли – геотермальные электростанции;
  • солнечную энергию (солнечные электростанции);
  • кинетическую энергию ветра (ветровые);
  • энергию волн, приливов морей и океанов (волновые).

Основное оборудование электростанций

В целом, электростанция – это смешанное предприятие, которое состоит из комплекса сооружений и зданий со сложным оборудованием. Некоторые агрегаты и установки, входящие в состав станции, могут размещаться непосредственно под открытым небом, на определённой, огражденной и охраняемой территории. К примеру, ветрогенераторы, ветроэлектростанции.

Электростанции, в зависимости от типа, оборудуются:

  • генераторами;
  • турбинами;
  • котлами;
  • трансформаторами;
  • распределительными устройствами;
  • двигателями;
  • линиями электропередач;
  • выключателями, разъединителями;
  • компенсаторами, средствами автоматики и защиты.

Оборудование электрических станций

Основным оборудованием на электростанции являются:

Электрогенератор – это электрическая машина, которая применяется на электростанциях для преобразования механической энергии движения в энергию электрического тока, используя принцип электромагнитной индукции. Роль источника механической энергии для генератора могут исполнять паровая турбина, двигатель внутреннего сгорания, поток ветра или воды, который вращает колесо или даже мускульная сила человека.

Компенсатор – машина, предназначенная для генерации реактивной мощности. Он в электрической системе выполняет роль водонапорной башни в системе водоснабжения. То есть, зависимо от величины тока, компенсатор может отдавать мощность в сеть или же забирать её оттуда.

Трансформатор – устройство для преобразования параметров электрического тока. Широко применяются на линиях электропередач, распределительных приборах. Чаще всего, трёхфазные, реже – однофазные трансформаторы. Силовые трансформаторы используют на электрических подстанциях.

Оборудование электрических подстанций

Электрический ток имеет неоспоримые преимущества перед остальными видами энергии. В первую очередь, это возможность её передачи на большие расстояния. Но даже в этом случае невозможно исключить некоторые потери, так как проводники обладают определённым сопротивлением, соответственно часть энергии тратится на её передачу.

При высоком напряжении энергию можно передать на огромные расстояния. Поэтому все линии электропередач – высоковольтные (110-1150 кВ). При этом сила тока понижается, чтобы уменьшить нагревание проводников и потери энергии. Для этого и применяются силовые трансформаторы, которые размещают на электроподстанциях. Существуют и понижающие подстанции, они выполняют обратные функции: понижают напряжение и пропорционально увеличивают силу тока.

В комплекс подстанции могут входить:

  • силовые трансформаторы, автотрансформаторы;
  • выключатели, разъединители;
  • преобразователи;
  • измерительное оборудование;
  • системы защиты и автоматики;
  • вспомогательные системы;
  • молниезащитные сооружения;
  • бытовые помещения.

Электрическое оборудование сетей

Силовое оборудование сетей должно быть защищено от коротких замыканий и внештатных режимов работы устройствами релейной защиты, автоматическими выключателями, регуляторами, предохранителями и другими противоаварийными автоматическими устройствами.

Оборудование станции устройствами электрической централизации

ЭЦ – комплекс технических средств, при помощи каких обеспечивается необходимая пропускная способность железнодорожных участков и безопасное движение поездов. С 40-х годов ХХ века железные дороги в массовом порядке оборудовались релейной централизацией с постепенным увеличением количества реле на одну стрелку. На сегодняшний день во всём мире безопасность движения обеспечивается при помощи микропроцессорных систем. Современные центры управления в значительной степени заменили широко распространённые сигнальные кабины.

Эти центры, обычно расположены рядом с основными железнодорожными станциями, управляют дорожной сетью с использованием электрических или электронных систем.

Наладка оборудования электростанций и подстанций

Наладочные работы проводятся специализированными наладочными подразделениями, которые входят в состав строительных и эксплуатационных организаций. Персонал осуществляет наладку и подготовку смонтированного оборудования, а также вспомогательного комплекса устройств и установок. От качества работы подразделения зависит работа нового оборудования, его надёжность и экономичность в процессе эксплуатации.

Читайте также:  Камни отрезные по металлу

Производители и поставщики оборудования для электрических станций, подстанций и сетей

Среди российских предприятий и компанией есть и производители, и поставщики оборудования.

ОАО «Пермский моторный завод» серийно производит семейство газотурбинных блочно-модульных электростанций серии «Урал», а также газотурбинные электростанции ГТЭС-12П (ЭГЭС-12С), ГТЭС-16ПА , ГТЭС-25П и ГТЭС-25ПА блочно-модульного и зального исполнения;

ООО «СИНЕРГЕТИКА» является официальным мастером-дистрибутором электростанций SDMO и партнёром по продаже продукции Mitsubishi Heavy Industries.

ЗАО «ПФК «Рыбинсккомплекс» занимается проектированием, строительством и продажей газовых электростанций.

«НПО САТУРН» предлагает газовые турбины, которые используют в качестве резервных источников энергоснабжения.

Для выработки электроэнергии на электростанциях применяют синхронные генераторы трехфазного переменного тока. Различают турбогенераторы (первичный двигатель – паровая или газовая турбина) и гидрогенераторы (первичный двигатель – гидротурбина).

Быстроходность турбогенератора (частота вращения у агрегатов ТЭС составляет 3000 об/мин, у агрегатов АЭС-1500 и 3000 об/мин) определяет особенности его конструкции – с неявнополюсным ротором и с горизонтальным валом.

Гидрогенераторы (частота вращения 60-750 об/мин) выполняют с явнополюсными роторами и преимущественно с вертикальным расположением вала.

Силовые трансформаторы предназначены для преобразования электроэнергии переменного тока с одного напряжения на другое. По количеству обмоток различного напряжения на каждую фазу трансформаторы разделяются на двухобмоточные и трехобмоточные. Кроме того, обмотки одного и того же напряжения, обычно низшего, могут состоять из двух и более параллельных ветвей, изолированных друг от друга и от заземленных частей. Такие трансформаторы называют трансформаторами с расщепленными обмотками.

Синхронные и статические компенсаторы как источники реактивной мощности устанавливаются вблизи потребителей для получения реактивной мощности. Синхронный компенсатор-это синхронная машина, работающая в двигательном режиме без нагрузки на валу при изменяющемся токе возбуждения. Статические компенсаторы – это батареи конденсаторов и другие источники реактивной мощности, не имеющие вращающихся частей.

При эксплуатации генераторов и синхронных компенсаторов должны быть обеспечены их бесперебойная работа в допустимых режимах, а также надежное действие систем возбуждения, охлаждения, маслоснабжения, устройств контроля, защиты и автоматики.

При эксплуатации трансформаторов (автотрансформаторов) должна быть обеспечена их длительная и надежная работа путем:

– соблюдения нагрузок, напряжений и температур в пределах установленных норм;

– поддержания характеристик масла и изоляции в нормированных пределах;

– содержания в исправном состоянии устройств охлаждения, регулирования напряжения, защиты масла и др.;

Коммутационные аппараты до 1 кВ:

– неавтоматические выключатели (переключатели, рубильники);

– контакторы и пускатели;

– бесконтактные коммутационные устройства.

Коммутационные аппараты свыше 1 кВ:

– разъединители для внутренней и для наружной установки;

– короткозамыкатели и отделители;

Выключатели высокого напряжения.

– системы дистанционного управления выключателями;

– сигнализации и блокировки;

– установки постоянного тока;

– установки оперативного переменного и выпрямленного тока;

Источники оперативного переменного тока.

Общие сведения о распределительных устройствах. Принципы построения и классификация распределительных устройств.

Вопросы самоподготовки.

1. Номинальные параметры и условия работы генераторов.

2. Системы охлаждения генераторов.

3. Режимы работы генераторов.

4. Типы трансформаторов и их параметры, элементы конструкции и системы охлаждения.

5. Потребители электроэнергии переменного и выпрямленного оперативного тока.

| следующая лекция ==>
Основные способы получения электроэнергии | Тема 3. Особенности строительства, эксплуатации и развития электростанций

Дата добавления: 2017-12-05 ; просмотров: 510 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

По функциональному признаку электрические аппараты высокого напряжения (АВН) подразделяются на следующие виды: – коммутационные аппараты (выключатели, разъединители, короткозамыкатели, отделители); – защитные и ограничивающие аппараты (предохранители, токоограничивающие реакторы, разрядники, нелинейные ограничители перенапряжений); – комплектные распределительные устройства (КРУ).

Коммутационные аппараты используются для формирования необходимых схем передачи энергии от ее источника (электростанции) к потребителю.

Выключатели предназначены для оперативной и аварийной коммутации в энергосистемах, т.е. выполнения операций включения и отключения отдельных цепей при ручном или автоматическом управлении. Во включенном состоянии выключатели должны беспрепятственно пропускать токи нагрузки. Характер режима работы этих аппаратов несколько необычен: нормальным для них считается как включенное состояние, когда они обтекаются током нагрузки, так и отключенное, при котором они обеспечивают необходимую электрическую изоляцию между разомкнутыми участками цепи. Коммутация цепи, осуществляемая при переключении выключателя из одного положения в другое, производится нерегулярно, время от времени, а выполнение им специфических требований по отключению возникающего в цепи короткого замыкания чрезвычайно редко. Выключатели должны надежно выполнять свои функции в течение срока службы (25 лет), находясь в любом из указанных состояний, и одновременно быть всегда готовыми к мгновенному эффективному выполнению любых коммутационных операций, часто после длительного пребывания в неподвижном состоянии. Отсюда следует, что они должны иметь очень высокий коэффициент готовности: при малой продолжительности процессов коммутации (несколько минут в год) должна быть обеспечена постоянная готовность к осуществлению коммутаций.

Читайте также:  Как удалить грибок в обуви

Секционные выключатели применяются в сборных шинах. В распределительных устройствах (РУ) электростанций секционные выключатели при нормальной работе обычно замкнуты. Они должны автоматически отключаться только при повреждении в зоне сборных шин. Вместе с ними должны отключаться и другие выключатели поврежденной секции. Таким образом, поврежденная секция РУ будет отключена, а остальная часть останется в работе.

Разъединители применяются для коммутации обесточенных при помощи выключателей участков токоведущих систем, для переключения РУ с одной ветви на другую, а также для отделения на время ревизии или ремонта силового электротехнического оборудования и создания безопасных условий от смежных частей линии, находящихся под напряжением. Разъединители способны размыкать электрическую цепь только при отсутствии в ней тока или при весьма малом токе. В отличие от выключателей разъединители в отключенном состоянии образуют видимый разрыв цепи. После отключения разъединителей с обеих сторон объекта, например выключателя или трансформатора, они должны заземляться с обеих сторон либо при помощи переносных заземлителей, либо специальных заземляющих ножей, встраиваемых в конструкцию разъединителя.

Отделитель служит для отключения обесточенной цепи высокого напряжения за малое время (не более 0,1 с). Он подобен разъединителю, но снабжен быстродействующим приводом.

Короткозамыкатель служит для создания искусственного короткого замыкания (КЗ) в цепи высокого напряжения. Конструкция его подобна конструкции заземляющего устройства разъединителя, но снабженного быстродействующим приводом.

Короткозамыкатели и отделители устанавливаются на стороне высшего напряжения РУ малоответственных потребителей, когда в целях экономии площади и стоимости РУ выключатели предусмотрены только на стороне низшего напряжения.

Ограничивающие аппараты подразделяются на аппараты ограничения тока и напряжения.

К токоограничивающим аппаратам относятся предохранители и реакторы высокого напряжения. Плавкие предохранители предназначены для защиты силовых трансформаторов и измерительных трансформаторов напряжения, воздушных и кабельных линий, конденсаторов.

Токоограничивающие реакторы представляют собой катушку индуктивности без стали и служат для ограничения тока короткого замыкания (КЗ) и поддержания напряжения на сборных шинах РУ. Применение их позволяет существенно снизить требования к выключателям по электродинамической, термической стойкости и отключающей способности в сетях с реакторами по сравнению с аналогичными сетями, не защищенными реакторами.

В качестве ограничителей грозовых и внутренних перенапряжений используются разрядники и ограничители перенапряжения. Они должны быть установлены вблизи силовых повышающих трансформаторов и вводов воздушных линий в РУ. Они позволяют снизить требования к прочности электрической изоляции аппаратов и оборудования РУ, уменьшить габаритные размеры электрической установки и значительно снизить ее стоимость.

Комплектные распределительные устройства (КРУ) составляются из полностью или частично закрытых шкафов или блоков со встроенными в них АВН, устройствами защиты, автоматики, контрольно-измерительной аппаратуры и поставляемых в собранном на заводе или полностью подготовленном для сборки виде. Различают распределительные устройства внутренней и наружной установки. Комплектные распределительные устройства становятся наиболее распространенным типом РУ. В последнее время начали широко применяться герметизированные РУ (ГРУ), в которых все токоведущие элементы и весь комплекс аппаратуры (выключатели, разъединители) расположены внутри герметичной оболочки, заполненной сжатым газом (элегазом). Наиболее эффективно ГРУ будут применяться в крупных городах, что даст значительную экономию городских площадей и повысит надежность энергосистем.

41. Электрические схемы электростанций и подстанций. Классификация схем распределительных устройств. Основные требования, предъявляемые к схемам распределительных устройств электроустановок.

Читайте также:  Как сделать свет в палатке

К схемам электрических соединений электроустановок предъявляется целый комплекс требований, из которых можно выделить семь основных: надежность, экономичность, удобство эксплуатации, технологическая гибкость, экологическая чистота, компактность и унифицированность.

По степени надежности главные схемы ЭС должны выбираться исходя из важности и значения электростанции в энергосистеме с точки зрения надежного электроснабжения потребителей электрической энергии. Выбранная схема, в частности, должна обеспечивать: – допустимую (минимальную) потерю генераторной мощности ЭС в расчетных аварийных режимах (например, при устойчивом коротком замыкании на одной из систем шин ВН или СН); – сохранение транзита системных связей через шины РУ при авариях на электростанции; – ликвидацию аварий в РУ по возможности только операциями с выключателями; – питание РУ с.н. от энергосистемы после полной остановки электростанции.

В зависимости от конкретных условий (например, при сооружении электростанций в зонах повышенной сейсмичности, вечной мерзлоты и др.) к надежности главных схем могут предъявляться и другие требования.

При выполнении схем ГРУ ТЭЦ и ПС должны учитываться требования, связанные с категорией потребителей по степени ответственности их электроснабжения.

В соответствии с Правилами устройства электроустановок (ПУЭ) все потребители делятся на три категории:

· I категория — электроприемники, нарушение электроснабжения которых может повлечь за собой опасность для жизни людей, значительный ущерб народному хозяйству, повреждение оборудования, массовый брак продукции, расстройство сложного технологического процесса, нарушение особо важных элементов городского хозяйства. Такие потребители должны обеспечиваться электроэнергией от двух независимых источников питания, иметь 100 %-ный резерв по питающим линиям электропередачи. Перерыв в электроснабжении таких потребителей допускается лишь на время автоматического ввода резервного питания (АВР), допустимого по условию самозапуска электродвигателей.

· II категория — электроприемники, перерыв в электроснабжении которых связан с массовым недоотпуском продукции, простоем рабочих, механизмов и промышленного транспорта, нарушением нормальной деятельности значительного числа городских жителей. Для таких потребителей допускается перерыв в электроснабжении на время, необходимое для включения резервного питания дежурным персоналом или выездной оперативной бригадой. Питание таких потребителей допускается осуществлять через один силовой трансформатор (при наличии передвижного резерва) по одной линии электропередачи.

· III категория — все остальные электроприемники, не подходящие под определения I и II категорий (например, электроприемники цехов несерийного производства, вспомогательных цехов, небольших поселков и т.п.). Для таких потребителей допустимы перерывы электроснабжения на время, необходимое для ремонта или замены поврежденного элемента сети, но не более одних суток.

Под экономичностью схемы подразумевается принятие решений с учетом необходимых капитальных вложений и ежегодных издержек на производство тепловой и электрической энергии при обеспечении требуемой степени надежности. Принятие того или иного уровня надежности схемы производится на основании сопоставления затрат на его обеспечение с экономическими потерями (ущербом), связанными с нарушением ее работоспособности.

Под удобством эксплуатации схемы понимаются надежность работы и простота ее исполнения, снижение вероятности ошибок обслуживающего персонала в процессе эксплуатации, минимизация количества коммутаций в первичных и вторичных цепях, уменьшение количества аварий из-за ошибок персонала и отказов электрооборудования во время производства оперативных переключений.

Под технологической гибкостью схемы понимается ее способность адаптироваться к изменяющимся условиям работы при плановых ремонтах, аварийно-восстановительных работах, расширении, реконструкции и испытаниях.

Под экологической чистотой схемы понимается степень воздействия электроустановки на окружающую среду (шум, электрические и магнитные поля, выбросы, отходы и т.п.) и на человека.

Компактность схемы подразумевает минимизацию площадей, занимаемых РУ [например, применение элегазового распределительного устройства (КРУЭ) в 10 раз и более уменьшает площадь отчуждаемых земель для его сооружения по сравнению с традиционным решением].

Унифицированность схемы есть не что иное, как использование типовых решений, позволяющих снизить материальные, трудовые и финансовые затраты на проектирование, монтаж, пусконаладочные работы и эксплуатацию электроустановки.

Последнее изменение этой страницы: 2016-12-30; Нарушение авторского права страницы

Комментарии запрещены.

Присоединяйся